Swarm Assignment and Trajectory Optimization Using Variable-Swarm, Distributed Auction Assignment and Model Predictive Control
نویسندگان
چکیده
This paper presents a distributed, guidance and control algorithm for reconfiguring swarms composed of hundreds to thousands of agents with limited communication and computation capabilities. This algorithm solves both the optimal assignment and collisionfree trajectory generation for swarms, in an integrated manner, when given the desired shape of the swarm (without pre-assigned terminal positions). The optimal assignment problem is solved using a distributed auction assignment that can vary the number of target positions in the assignment, and the collision-free trajectories are generated using sequential convex programming. Finally, model predictive control is used to solve the assignment and trajectory generation in real time using a receding horizon. The model predictive control formulation uses current state measurements to resolve for the optimal assignment and trajectory. The implementation of the distributed auction algorithm and sequential convex programming using model predictive control produces the swarm assignment and trajectory optimization algorithm that transfers a swarm of spacecraft to a desired shape in a distributed fashion. Once the desired shape is uploaded to the swarm, the algorithm determines where each spacecraft goes and how it should get there in a fuel-efficient, collision-free manner.
منابع مشابه
Swarm assignment and trajectory optimization using variable-swarm, distributed auction assignment and sequential convex programming
This paper presents a distributed, guidance and control algorithm for reconfiguring swarms composed of hundreds to thousands of agents with limited communication and computation capabilities. This algorithm solves both the optimal assignment and collision-free trajectory generation for robotic swarms, in an integrated manner, when given the desired shape of the swarm (without pre-assigned termi...
متن کاملAn Hybrid Fuzzy Variable Neighborhood Particle Swarm Optimization Algorithm for Solving Quadratic Assignment Problems
Recently, Particle Swarm Optimization (PSO) algorithm has exhibited good performance across a wide range of application problems. A quick review of the literature reveals that research for solving the Quadratic Assignment Problem (QAP) using PSO approach has not much been investigated. In this paper, we design a hybrid meta-heuristic fuzzy scheme, called as variable neighborhood fuzzy particle ...
متن کاملSimultaneous Multi-Skilled Worker Assignment and Mixed-Model Two-Sided Assembly Line Balancing
This paper addresses a multi-objective mathematical model for the mixed-model two-sided assembly line balancing and worker assignment with different skills. In this problem, the operation time of each task is dependent on the skill of the worker. The following objective functions are considered in the mathematical model: (1) minimizing the number of mated-stations (2), minimizing the number of ...
متن کاملA Multi-Objective Particle Swarm Optimization for Mixed-Model Assembly Line Balancing with Different Skilled Workers
This paper presents a multi-objective Particle Swarm Optimization (PSO) algorithm for worker assignment and mixed-model assembly line balancing problem when task times depend on the worker’s skill level. The objectives of this model are minimization of the number of stations (equivalent to the maximization of the weighted line efficiency), minimization of the weighted smoothness index and minim...
متن کاملAN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION
This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015